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ABSTRACT

P ST TR

A multi-dimensional sequence is not, in general, uniquely defined in
terms of only the phase or magnitude of its Fourier transform. However, in
this paper some conditions are developed under which a multi-dimensional H
sequence is uniquely defined by its phase. A similar set of conditions are
then developed for the unique specification of a multi-dimensional sequence

in terms of its Fourier transform magnitude. In both cases, it is initially ﬁ

assumed that either the phase or magnitude is known for ail frequencies. The

results are then generalized to the case in which the phase or magnitude is

known only for a finite set of frequency values.
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I. INTRODUCTION

Under a variety of conditions, a multi-dimensional (m-D) sequence may be
reconstructed from partial information about its Fourier transform. For example,
if an m-D sequence x("l""’"m) is zero whenever any of the indices Ny for
k=1,...,m are negative, then x(nl,...,nm) can be exactly recovered from the real
part or, except for x{0,...,0), from the imaginary part of its Fourier
transform {1]. If, on the other hand, x(nl,...,nm) is minimum phase [2}, then
it can be recovered from the magnitude ¢.. to within a scale factor, from the
phase of its Fourier transform.

The reconstruction of an m-D sequence from such partial information is
important and useful in many applications. For example, in some cases of
optical image processing or in the measurement of diffraction patterns, only
spectral magnitude information can be recorded or is available. Therefore, it
is of interest to recover a signal from only spectral magnitude information in
these cases. In other situations, either the spectral magnitude or phase of a
signal may be severely distorted so that the restoration of the signal must rely
on the undistorted component. For example, in the class of problems referred to
as blind deconvolution (3|, a signal is to be recovered from an observation which
is the convolution of a desired signal with some unknown signal. Since little
is usually known about either the desired signal or the distorting signal,
deconvolution of the two signals is generally a very difficult problem. However,

in the special case in which the distorting signal is known to have a Fourier
transform which is purely real, the tangent of the phase of the observed signal
is identical to the tangent of the phase of the original signal. Such a situation

occurs, at least approximately, in long-term exposure to atmospheric turbulence
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or when images are blurred by severely defocused lenses with circular aperture

stops [4]. In this case, it is of interest to consider signal reconstruction

from phase information alone.
This paper is concerned with the development of some conditions under which
an m-D sequence is uniquely defined by its Fourier transform phase or magnitude.

In general, of course, phase or magnitude information alone is not sufficient

to uniquely specify an m-D sequence. For example, any m-D sequence may be

convolved with a zero phase sequence to produce another m-D sequence with the

Similiarly, any m-D sequence may be convolved with an all-pass
Therefore,

same phase.

sequence to produce another m-D sequence with the same magnitude.
without any additional information or constraints, the Fourier transform phase

or magnitude may, at best, uniquely specify an m-D sequence to within a zero

phase or all-pass convolutional factor, respectively. Nevertheless, with a

few basic results from the theory of polynomials in several variables, some

useful conditions may be derived under which an m-0 sequence is uniquely defined

by the phase or magnitude of its Fourier transform. These conditions, which are

distinctly different from the minimum or maximum phase constraints, imply that
most m-D sequences with finite support are recoverable from either their phase
or magnitude.

This paper is organized as follows. In Section II, the necessary results
from the algebra of polynomials in more than one variable are briefly reviewed.
Some notation and terminology related to multi-dimensional signals is then

In Section IV, conditions are developed under which

presented in Section IIJ.
an m-D sequence is uniqueiy defined in terms of the phase or magnitude of its




Although these conditions are initially derived under the

Fourier transform.
assumption that either the phase or magnitude is known for alil frequencies,

they are then extended to the case in which the phase or magnitude

is known only over a finite set (lattice) of points.




I1. POLYNOMIALS IN MORE THAN ONE VARIABLE

In this section, some notation and terminology related to the algebra of
polynomials in more than one variable 1s reviewed. In addition, two theorems
are presented which are of considerable importance in many multi-dimensional
signal processing applications and will be referred to frequently in this paper.
Proofs of these theorems as well as a detailed treatment of many topics not

presented in this section may be found in [5].

A monomial is a function of n variables of the form:

AL (1)

where kl’kZ""’kn are non-negative integers and c is an arbitrary number which

is referred to as the coefficient of the monomial. The degree of the monomial

is defined as
d(f) = k1 kot + kg (2)

A polynomial is then simply a sum of a finite number of monomials. In this
paper, a polynomial will be referred to as being non-trivial if it consists of
a sum of two or more monomials. A trivial polynomial is therefore either a
constant or a monomial of non-zero degree. !
The coefficients of the monomials which define a polynomial are called the '1
coefficients of the poiynomial and the degree of the polynomial is the degree

of the monomial with the highest degree. Any polynomial p in n variables of

degree N may therefore be written in the form:




k, k k
_ 1_72 .
p = Z c(kl’“"kn) 2"z, ...zn" (3)
k1+...+kn5N

It is often useful to consider p in (3) as a polynomial in one variable,
say zo, with coefficients which are polynomials in the remaining (n-1) variables.

For example, p in (3) may be written as

N
p=D . oylk) 2k (4)
k=0

where %(k) for k=0,1,...,N are polynomials in the (n-1) variables z, for n#s.
In this form, the largest value of k for which ¢2(k) is non-zero is referred
to as the degree of p with respect to the variable zy and will be denoted by
dy(p).

If all the coefficients of a polynomial p belong to a particular number
field, J, then p is called a polynomial over the field . The set of all
polynomials in n variables over a field & form a ring which is denoted by
g(zl,...,zn). If two polynomials p, and p, in ,g(zl,...,zn) are such that
P1=CPy where ce % and is non-zero, then Py and p, are called associated
polynomials. A polynomial peg(zl,...,zn) with d(p) >0 is called a reducible
polynomial over the field K if there exists polynomials pl,pzeg(zl,...,zn)
such that P=p,Py with d(pl) >0 and d(pz) >0. If no such decomposition is
possible, then p is called an irreducible polynomial. It is of interest to
note that, as a consequence of the Fundamental Theorem of Algebra, the only

polynomials in one variable over the field of complex numbers which are

e T EITIAAE . (See.
O R ra o N ;

e S it e e e e




irreducible are polynomials of first degree. This result, however, is not true
in general. Over the field of real numbers, for example, the polynomial
p(z)=22+1 is irreducible. Even over the field of complex numbers, the polynomial
| p(zl,22)=z§+z2 is irreducible. This second example illustrates, in particular,

j the fact that the Fundamental Theorem of Algebra does not hold for polynomials

in more than one variable.

I

} ‘ The first theorem of interest in this paper asserts that any polynomial of
i g non-zero degree can be uniquely decomposed, to within factors of zero degree,

:

into a product of irreducible polynomials. More specifically,

Theorem 1: Any polynomial peé??zl,...,zn) having non-zero degree

can be expressed as a product of factors irreducible in .

Furthermore, if p has two different factorizations:

p = fl fz...fm =9y 9p---9 (5)

then m=n and the factors fi and 9; can be ordered in such a way

| that the factors are associated.

It is well-known [5] that a polynomial p(z) in one variable of degree N
is uniquely defined in terms of its values over a set A=={ak}:=0 of N+l
distinct points. This result has a natural extension to polynomials in more
than one variable which asserts the uniqueness of a polynomial peé?r(zl....,z )

n
in terms of its values over an n-dimensional lattice of points. An n-dimensional
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lattice is an extension of a single set of points, A, to an n-fold Cartesian

N

product of n sets of points, Ak’ for k=1,...,n. Specifically, let Ak={ak 1} k

be a set of N, distinct points in the field S for k=1,...,n. Then the
n-dimensional lattice Q’(Al,...,An) is defined as

n

Q(Al,...,An) = T A= AL x Ay x oo x A (6)
k=1

The result of interest may now be stated as follows:

Theorem 2: Suppose p;,P, eg'(zl,...,zn) with dk(pl) <N, and
dk(pz) < Nk for k=1,...,n. Let Ak be a set of Nk distinct points
in the field &. If Py and p, are equal over the set (lattice) of

points Q(Al,.. -»A,)s then p.=p,.

This theorem will be used in deriving some conditions for the uniqueness of a
multi-dimensiona) sequence in terms of a finite set (lattice) of values of

either the phase or magnitude of its Fourier transform.
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ITI. FRAMEWORK

This paper is concerned with the uniqueness of a multi-dimensional sequence
with real coefficients in terms of either the phase or magnitude of its Fourier
transform. Although the results which are presented apply to sequences of
arbitrary dimension, all discussions are phrased in terms of two-dimensional
sequences, x(nl,nz), in order to simplify notation. In this section, some
notation and terminology related to 2-D sequences is presented and the general
framework of the uniqueness problem is established.

The z-transform of a two-dimensional sequence, x(nl,nz) is defined by

n, n
X(zl,zz) = E E x(nl,nz) 211 222 (7)
N M2

and the Fourier transform, denoted by X(ml,mz), is equal to X(zl,zz) on the unit
bi-disc |z;] =z,| =1, i.e.,

X(wl,mz) = X(zlﬁzz) (8)

zl=exp(jw1)
zy=exp(Jjuw,)
Written in polar form, X(wl,wz) is represented in terms of its magnitude and phase
as

X(ml,wz) = |X(w1’w2)le)(p[j(bx(wlswz)] (9)

where it is assumed that the phase is defined by its principal value. Therefore,

in terms of (9), this paper considers the uniqueness of x(nl,nz) in terms of

¢x(m1,w2) or |X(w1,w2)l. Although initially it is assumed that either the phase

or magnitude is known for all values of wy and W s the results are then extended

to the case in which the phase or magnitude is known only over a finite set of points.




Most of the sequences which are considered in this paper have finite

support, i.e.,x(nl,nz) is non-zero only for finitely many values of its arguments
ny and fype A sequence with finite support is said to be of extent leN2 if
x(n;,n,)=0 cutside a rectangular region of the form (KO,K0+N1-1] x [LO,L°+N2-1]
for some K0 and Lo‘ For the special case in which Ko and L0 may be taken to be

equal to zero, x("1’"2) is said to have first quadrant support and the region of

support is denoted by é??(Nl,Nz), i.e.,

RNy Ny) = [o,N1-1] X [O,Nz-l] (10)

Throughout this paper, any sequence with finite support may be assumed, without

any loss in generality, to have first quadrant support. In the general case, a

sequence may simply be shifted in order to satisfy this assumption. Consequently,
the set F(nl,nz) will be used to denote the collection of all real 2-D sequences
of finite extent with first quadrant support. The notation xe:F(nl,nz) will
therefore mean that the sequence x(nl,nz) has support 49?(N1,N2) for some Nl and
N2. Since the z-transform of a sequence xe:F(nl,nz) is a poiynomial in two
variables, z and z,, X(zl,zz) is an element of éﬂ?zl,zz) over the field of

real numbers:

xeF(nl,nz) - X g'(zl,zz) (11)

Now, suppose that xe:F(nl,nz) and has an irreducible z-transform of degree

N; in z; and N, in z, and consider the sequence %e:F(nl,nz) defined by

S

e ) .
VU N
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|

"\(l(nlsnz) = X( Nl-nl’ Nz"nz) (12)

The z-transform of %(nl,nz) is also irreducible and is given by
N
"J - -
X(z5,2,) = 2, 222 X(zll,zzl) (13)

A special class of sequences which will play an important role in the following

sections consists of those sequences for which

x(ny,n,) = t%(nl,nz) (14)
or,

X(27,2,) = £X(z},2,) (15)

Since Y(nl,nz) corresponds to a 180° rotation of x(nl,nz), sequences which
satisfy (14) are, except possibly for a minus sign, invariant under 180°
rotations. Therefore, these sequences will be said to be symmetric or to have
symmetric z-transforms. It should be noted that a 1-D sequence which has a
symmetric z-transform has all of its zeros (excluding those at z=0 or z’1=0)
on the unit circle or in reciprocal pairs. Therefore, (14) represents an
extension of this property to 2-D sequences. It may also be noted that except
for a linear phase term of the form exp[%j(N1w1+N2w2)], the Fourier transform
of a symmetric sequence is either purely real or purely imaginary.

An important property of a sequence x¢ F(nl,nz) is that its z-transform

need only be known over a finite set of points in order to uniquely specify

the sequence. Although these points can not be chosen arbitrarily, Theorem 2

10




in Section II provides one set of points which is sufficient for this

specification. More specifically, the following lemma is a direct consequence

of Theorem 2:

Lemma: Suppose X,y e F(n ,n,) with support é??(Nl,Nz). Let

M
A = {a } k be a set of M, distinct complex numbers for k=1,2
k ks2fy_q k

with M1>N1 and M2>N2. If

¥(z,,2,) (16)

X(zl,z
LA A

)
2| LA Ay)

then x(nl,n2)==y(n1,n2) for all ny and no.

Of particular interest in this paper, however, is the case in which the

elements of the sets Ak have unit magnitude. Specifically, consider the sets

M
- k :
Y = gsk’gfkl with 058k,1< 2m (17a)
M
A = iexp(jsk 2)2 (17b)
! 2=1
where the elements of Qk for k=1,2 are assumed to be distinct. Then
X{(z,,z,) = X(wys0n) (18)
12 L(A5A) 172 @0y,9,)

represents the Fourier transform of x(nl,nz) evaluated over the lattice

;Z’(QI,QZ) in the ml,wz-plane. If, in addition, the numbers By g are equally

11
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spaced between 0 and 2w, i.e..sk 2=2n2/Mk, then (18) represents the MlxMz-point
]

Discrete Fourier Transform (DFT) of x(n;,n,). In this case, the M xM,-point DFT

will be denoted by X(kl’kZ)Ml,MZ:

- [
X(kl,kz)M M = X(Zl,Zz) zl=exp(j21rk1/M1) (19)

172
zz=exp(32nk2/M2)
which, when expressed in terms of its magnitude and phase, will be written as
X(kq ko) = 1X(Kq»Ks) ] exp[io, (kysk,) ] (20)
1°72'M, .M, 1°°2 Ml,M2 C x'"1°72 MI’MZ

In the following sections, when the length of the DFT is assumed to be known

or when it is explicitly stated, the subscripts in (20) will occasionally be

dropped.

12
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IV. THE QUESTION OF UNIQUENESS

in this section, the results from Section Il are applied to the question
of the unigueness of a 2-D sequence in terms of the phase or magnitude of its
Fourier transform. In Section 4.1, conditions are given under which a 2-D
sequence with finite support is uniquely specified in terms of the phase of its
Fourier transform. A similiar set of conditions are given in Section 4.2 for
the uniqueness of a 2-D sequence with finite support in terms of its Fourier
transform magnitude. In Section 4.3, the results in Sections 4.1 and 4.2 are
used to generate a set of conditions under which a 2-D sequence with finite
support in uniquely specified in terms of either its Fourier transform phase

or magnitude. 1n addition, the generalization of these results to 2-D

sequences whose convolutional inverses have finite support is described.

4.1 Uniqueness in terms of phase

It has recently been shown [6] that a 1-D finite length sequence x(n) is
uniquely specified to within a scale factor by the phase or the tangent of the
phase of its Fourier transform if X(z) has no zeros on the unit circle or in
reciprocal pairs, i.e. if X(z) contains no symmetric factors. This result may
be directly extended to the case of multi-dimensional sequences. This extension,

in terms of 2-D sequences is as follows:

Theorem 3: Let x,ye F("1'"2)' If X(zl,zz) and Y(zl,zz) have no

symmetric factors and

¢X(w1’w2) = ¢y(w1,w2) (21&)

13




for all W) and wy, then y(nl.n2)= Bx(nl,nz) for some positive

number B. If, on the other hand,
tan ¢X(w1’w2) = tan ¢y(wl’w2) (Zlb)

: for all wy and Wy s then y(nl,n2)= Bx(nl,nz) for some real number B. v

1t should be noted that the symmetric factors which are excluded from X(zl,zz)

= and Y(zl,zz) in this theorem need not be irreducible. For example, if A(zl,zz)

. = - -— X

is a polynomial and X(zl,zz)—P(zl,zz)Q(zl,zz) where P(zl,22)-A(zl,22)A(zl,zz),
then x(nl,nz) does not satisfy the constraints of the theorem since P(zl,zz) is

a (reducible) symmetric factor of X(zl,zz). In effect, the exclusion of symmetric

factors from a sequence xe:F(nl,nz) is equivalent to the constraint that if

o N
= A(z,,2z,) is an irreducible factor of X(z;,z,) then A(zl,zz) is not a factor of
X(zl,zz).
An outline of a proof of Theorem 3 is as follows. Let x,ye:F(nl,nz) and
let N be a positive integer which is sufficiently large so that x(nl,nz) and ;

y(nl,nz) are both zero outside the domain ZZ(N,N). Consider the sequence
h(nl,nz) = x(nl.nz) * y(-nqy,-n,) (22)

! which has a z-transform given by
)

| H(z;h2,) = X(zp.2,) Y(z7liz; (23)

14




By noting that the phase of “("1'"2) is given by

¢h(w1.w2) = ¢x(w1.w2) - ¢y(w1,w2) (24)

it follows from (21a) that ¢h(w1,m2)=0 or from (21b) and the trigonometric

identity

tana + tang (25)
25

tan(a+p) =
17 tanatan$B

that tan¢h(w1,w2)==0. In either case, the Fourier transform of h(nl,nz) is

purely real which implies that

h(nlsnz) = h('nls'nz) (26)
Therefore, from (23) and (26),
Xzppzp) Yizihzph) = X(z1hzh) ¥(zpe2)) (27)

Multiplying both sides of (27) by (zlzz)N results in the following polynomial

equation:

n ky ky o R
X(zl,zz) Y(zl,zz) 2,7z, = X(zl,zz) Y(zl,zz) 2, 7, (28)

where kl,kz,zl, and 22 are non-negative integers. Now consider an arbitrary

non-trivial irreducible factor Xk(zl,zz) of x(zl,zz). From Theorem 1 in

e

gy
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Ssection 2, it follows that Xk(zl,zz) must be associated either with a factor of

}(zl,zz) or with a factor of Y(zl,zz). However, if Xk(zl,zz) is associated with

N,
a factor of Xk(zl,zz) then

N
Xk(zl,zz) = "Xz(zl’zz) (29)

for some &. If 2=k then (29) impiies that

xk(zl,zz) = az Xk(zl,zz) (30)

Therefore, a=+1 and Xk(zl,zz) is symmetric. If, on the other hand, kf% then

X (2]:2,) Xp(z1,2,) = “Yg(zl’zz) Xy (27525) (31)

4
In other words, both Xz(zl,zz) and Xz(zl,zz) are factors of X(zl,zz). Both
cases, however, are excluded by the theorem hypothesis. Consequently, each

non-trivial irreducible factor of X(zl,zz) must be associated with a factor

of Y(zl,zz). Therefore, Y(zl,zz) is of the form:

my Mo
Y(zl,zz) = [z1 z, P(zl,zz)] X(zl,zz) (32)

where my and m, are integers and P(zl,zz) is a polynomial. However, as in the

steps leading to (26), (21) requires that the term in brackets correspond to a

sequence with a real Fourier transform. This, in turn, implies that P(zl,zz)

i




is symmetric which, since Y(zl.zz) contains no symmetric factors, requires that

P(zl,zz) be a constant:

my M
Y(z),2,) = B2, 2z, X(Z1’22) (33) |

Again using (21) it follows that m1=m2=0 and the desired result follows by ?
noting that B must be positive in the case of hypothesis (21a). :
1t may be apparent at this point that it is not necessary to assume that t

(21) holds for all Wy and W, in order to prove the theorem if the regions of 9
support of x(nl,nz) and y("1’“2) are known. More specifically, suppose that

x(nl,nz) and Y("1’"2) are known to be zero outsfde the domain é??(Nl,Nz).

If My >2(N;-1) and M, >2(N,-1) and if (21) is replaced with the constraint

that the phase or tangent of the phase of the MlxMz-point DFT's of x(nl,nz)

and y("l’"z) are equal, then Theorem 3 stiil remains valid. This follows first

from the observation that “("1’"2) in (22) is zero outside the region

[(1-N)) S (N -1 x[(1-N5) ,(Ny=1)] . Therefore, the M,xM,-point DFT of h(n,,n,)

equals the product of the M,xM,-point DFT*s of x(nl.nz) and y("l’"2>' Thus,
(34)

y 172
MyMy MMy MMy

and (27) follows as in the proof of Theorem 3. Proceeding as in Theorem 3, it

follows that Y(zl,zz) and X(zl.zz) are related by (32). However, the constraints

on the phase of the M xM,-point DFT's of x(nl,nz) and y("1'"2) imply that the

term in brackets in (32) corresponds to a sequence with a real MlxM2~point DFT.
Therefore, in a style similiar to that in Theorem 3, it follows that the term
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jn brackets in a constant. Therefore a corollary to Theorem 3 is as follows:

| Corollary 3.1: Let x,ye:F(nl,nz) with support é??(Nl,NZ). If
i X(zl,zz) and Y(zl,zz) have no symmetric factors and

Al e ol

9, (Kqsky) = ¢, (kqsky) (35)
y't1°72 x'"1°72

with M1>'2(N1-1) and M2>'2(N2-1), then y(nl,n2)= Bx(nl,nz) for some

positive number B, If, on the other hand,

tan ¢ _(k

y 1,k2)M = tan ¢X(k1,k2) (36)

then y(nl,n2)= Bx(nl,nz) for some real number 8.

The importance of this corollary lies in the fact that it allows for the
development of practical algorithms for reconstructing a sequence from the phase

of its DFT.

4.2 Uniqueness in terms of magnitude

In Section 4.1, the uniqueness of a multi-dimensional sequence in terms of
the phase of its Fourier transform was considered. This section addresses the
dual problem related to the uniqueness of a multi-dimensional sequence in terms

of its Fourier transform magnitude. Perhaps the first treatment of this question

18




of uniqueness may be found in (7] where the uniqueness of a 2-D sequence

xe:F(nl,nz) is stated to be related to the irreducibility of its z-transform.
In this section, a slightly more general result is derived which includes

sequences with irreducible z-transforms as a special case. Even more importantly,

however, as in section 4.1, the uniqueness of a sequence xe:F(nl,nz) is also

considered when the magnitude of its Fourier transform is known only over a

finite set (lattice) of points.

Consider a sequence xs:F(nl,nZ) for which IX(ml,wz)l is known for all

w; and w,. Since the inverse Fourier transform of |X(w1,w2)|4 is the auto-

correlation, rx(nl,nz), of x(nl,nz):

r.(nysny) = x(ny,ny) * X('"l""z) (37)
the specification of |X(w1,w2)l is equivalent to the knowledge of rx(nl,nz) or

its z-transform:

_ -1 _-1
RX(ZI’ZZ) = X(Zlozz) x(zl 12y ) (38)
For any x¢ F(nl,nz), the most general form for its z-transform, X(zl,zz)
is given by

m m P
- 1 .72 X, ( )
X(zl,zz) = Bz 7, || (2102,
k=1

(39)

where B 1is a real number, my and m, are non-negative integers, and Xk(zl,zz)
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for k=1,...,p are non-trivial irreducible polynomials. Substituting (39) into

(38) gives
2 P 1 1 ;
R (z1525) = 87 1 X (z0525) X (2]7.2,7) (40) J
k=1 . l
Now suppose that the polynomial .
p
P(zy525) = [T X (2q,2)) (41)
k=1

N, N
. . . oy 2 .
is of degree N1 in z, and N, in z,. Multiplying RX(ZI’ZZ) by 11122 yields a

polynomial in Z and z, which has degree ‘ZN1 in Z and 2N2 in Z,:

_ Nl N2 2 p A"
Q,(zy525) = 2,7 2," R (2,2,) = 8 N X (2525) X (27,2,) (42)
k=1

It is apparent that the polynomials Qx(z1,22) and lx(w],m2)| contain exactly
the same information about x(nl,nz) since one may be uniquely derived from the
other. Therefore, the ability to uniquely recover X("l’"z) from |X(w1,w2)| is
equivalent to the ability to uniquely recover X(ZI’ZZ) from Qx(ql,zz). With this
in mind, it follows that x(nl,nz) cannot be unambiguously recovered from magnitude
information alone. For example, the sign of B as well as the linear phase term .
lezzz is not recoverable from Qx(zl,zz). Even more importantly, however, is

the observation that, without additional information, it is not possible to

N
determine whether Xk(zl,zz) or Xk(zl,zz) is a factor of X(zl,zz). This ambiguity

is not surprising, however, since it represents a 2-D extension of a familiar
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result for 1-D sequences [8]. Specifically, for any finite duration sequence
x(n), another sequence y(n) may be generated which has the same Fourier transform
magnitude as x(n) by simply reflecting a zero of X(z) about the unit circle.

n

a For 2-D sequences, Xk(zl’zz) represents the reflection of the zero contour of

X (2152,) about the unit bi-disc lz] = 12,0 = 1.

It will be useful in the following discussions to define an equivalence

relation on the set F(nl,nz) as follows:
y(nl,nz) N x("1’"2) if y(nl,nz) =+ x( kit N kot n2) (43)

for some integers k1 and k2' In other words, the equivaience class generated

by a sequence X("l’“z) is defined to be the set of all sequences which may be
derived from x(nl,nz) by a linear shift, a time-reversal, or by a change in

sign of the sequence. Note that all of the sequences within a given equivalence
class have the same Fourier transform magnitude. Thus, it will be .convenient to
refer to the Fourier transform magnitude of the sequences within an equivalence
class as the Fourier transform magnitude of the class.

In general, there will be more than one equivalence class having the same
Fourier transform magnitude. More specifically, given a sequence x¢ F("l’"z)
there may exist another sequence ys:F(nl,nz) with the same Fourier transform
magnitude as x(nl,nz) but which is not in the same equivalence class as x(nl,nz).
¥ Therefore, the goal of this section is to determine a set of conditions which
; ; guarantee the existence of only one equivalence class with a given Fourier

transform magnitude. The first question to be addressed, however, concerns the
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number of equivalence classes which have a given Fourier transform magnitude.
Once this has been established, conditions which guarantee the existence of only
one equivalence class may easily be determined. The answer to this first

question is implied by the following theorem:

Theorem 4: Let xa:F(nl,nz) with a z-transform given by

m, m P
- = gz, 2,2 (44)
x(zl,zz) le z, I Xk(zl’ZZ)
k=1

e, i e

where Xk(zl,zz) are non-trivial irreducible polynomials for

k=1,...,p. If yaF(nl,nz) and
]X(ml,wz)l = IY(ml,wz)l (45)

for all wy and Wy then Y(zl,zz) is of the form:

2 R v
Y(Zlyzz) = i"BZl 22 r[ Xk(zl’ZZ) n xk(zl’zz) (46)

kel kel
where I is a subset of the integers in the interval [1,p].
This theorem is simply a statement of the fact that the only way to
generate a new sequence, y(nl,nz), which has the same Fourier transform

magnitude as x(nl,nz) is to convolve x(nl,nz) with an all-pass sequence,

h(nl,nz), i.e., a sequence with IH(wl,w2)|= 1 for all w, and w,. However,
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any all-pass sequence with a rational z-transform is of the form:

ok D N
k=1
Therefore, given a sequence xe.F(nl,nz) with a z-transform of the form (44),
y(nl,nz) =x(n1,n2) *h(nl,nz) has finite support if and only if for each k,
Hk(zl,zz) =X£(21’22) for some Le[1,p]. Consequently, Y(zl,zz) must be of the
form given by (46).
An outline of a proof of this theorem is as follows. With x,ye:F(nl,nz),

let N be an integer large enough so that x(nl,nz) and y(nl,nz) are zero outside

the domain J2(N,N). From (45) it follows that
X(zl,zz) X(zil,zél) = Y(zl,zz) Y(zil,zél) (48)

Therefore, let the z-transform of y(nl,nz) be given by

8o
k=1
where Yk(zl,zz) are non-trivial irreducible factors for k=1,...,q. Substituting

(44) and (49) into (48) and multiplying by (zlzz)N yields the following equation:

L, M. M, P n L, L, 9

2.1.2 _ 2.1 72 v

82,2, TTXk(zl,zz)xk(zl,zz) = a°z,"2, TTYk(zl,zz)Yk(zl,zz) (50)
k=1 k=1

where Ml, M2’ Ll’ and L2 are positive integers. From Theorem 1 in Section 2, it
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follows that M1=L1, M2=L2, and p=q:

P q
g2 1T X (2525) ;k(zl,zz) = of TT Yk(zl,zz) vk(zl,zz) (51)
k=1 k=1
Again from Theorem 1, it follows that the factors Yk(zl,zz) may be ordered in
such a way that Yk(zl,zz) is associated with either Xk(zl’ZZ) or ;k(zl,zz) for
each k. Therefore, from (49) and the fact that (45) implies a=1tB, the desired
result (46) foliows.
It should be noted that, as a consequence of this theorem, all sequences
in F(nl,nz) with a given magnitude, IX(ml,wz)], have z-transforms with the same
number, p, of non-trivial irreducible factors. Furthermore, except for a scale
factor of (-1) and linear shifts, the only way to generate another sequence
y(nl,nz) in F(nl,nz) with the same magnitude as x(nl,nz) is to replace one or
more non-trivial factors Xk(zl,zz) of X(zl,zz) with ;k(zl,zz). mHowever, if
Xk(zl,zz) is symmetric, then the replacement of Xk(zl’ZZ) with xk(zl,zz) may
only change X(zl,zz) by a factor of {-1). Therefore, it follows that the number
of equivalence classes with magnitude [X(w,,u,)| is at most 2(p-1) where p is
the number of non-symmetric irreducible factors in X(zl,zz). Thus, the following

is an immediate consequence of Theorem 4:

Theorem 5: Let xe:F(nl,nz) have a z-transform with at most one
irreducible non-symmetric factor, i.e.
p

X(z,25) = P(z,2,) JT' X, (21225) (52)
=1
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where Xk(zl,zz) for k=1,...,p are irreducble symmetric factors. If

ye F(nl,nz) with
]Y(wl,wz)l = |X(w1,m2)| (53)
for all w) and Wy then y(nl,nz)«:x(nl,nz).

As in Section IV, it may be apparent that the assumption that (53) holds
for all w; and w, in this theorem is not necessary if x("1'"2) and y(nl,nz) are
known to be zero outside some given domain. More specifically, suppose that for
some N, and N,, x(“1’"2) and y(nl,nz) are known to be zero outside the domain
é??(Nl,NZ). Let @ and Ak be sets of Mk distinct points as defined in (17) for
k=1,2 and let <9?(Ql,92) and ‘9?(A1’A2) be the 2-D lattices generated by these
sets. Note that if
(54)

Ix(wlsw lY(m

) swy)
2| £ 9,9, 2| P(2;,0,)
then

Q,(zy,2 (55)

)‘ = Q,(z;,2 )|

2 y 172

where Qx(zl,zz) and Qy(zl,zz) are polynomials, as defined by (42), of degree at
most 2(N1-1) inz, and 2(N2-1) in z,. Therefore, if M1>»2(N1-1) and M2:>2(N2-1)
then it foliows from Theorem 2 that Qx(zl,zz)==oy(zl,zz) for all 2 and z,. Thus,
(54) implies that (53) holds for all w; and w,. Consequently,
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Corollary 5.1: Let x,ye F(nl,nz) with support é??(Nl,Nz). If x(zl,zz)

has at most one irreducible non-symmetric factor and

ix(wlswz) (56)

Yoy -
Yloyey) Piag.9,) P(5y59,)

where @ s a set of Mk distinct real numbers in the interval [0,2r)

k
with Mk:>2(Nk—I) for k=1,2, then y(nl,nz)ﬂ;x(nl,nz).

A special case of this theorem results when the points in the sets Q

are equally spaced between 0 and 2m. In this instance,

1X(ky5ky) (57)

IX(wl,wz) =
Q(QI'QZ) M]. ’Mz

is the magnitude of the MlxMZ-point DFT of x("1’"2)' Therefore, (56) may be

replaced with the constraint:

lY(k »K,) = lX(k »K,)
172w, ;, 172w, m, (58)

4.3 Extensions

{n Section 4.1, a set of conditions are presented under which a 2-D
sequence is uniquely defined to within a scale factor by the phase of its Fourier
transform. A similiar set of conditions are presented in Section 4.2 which allow

a 2-D sequence to be uniquely specified by the magnitude of its Fourier transform
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to within a delay, a sign, and a 180° rotation. It isof interest to note that
these uniqueness constraints are not mutually exclusive. Specifically, if
xs.F(nl,nz) has a non-symmetric irreducible z-transform, then x(nl,nz) satisfies
the constraints of Theorems 3 and 5. Therefore, the following result is a direct

consequence of these theorems:

Theorem 6: If x eF(nl,nz) and has a non symmetric irreducible

z-transform, then x(n;,n,) is uniquely specified (in the sense of

B, TN 7 4 bze AT o 3 e

Theorems 3 and 5) by either the phase or magnitude of its Fourier
transform. 1f, in addition, x(nl,nz) is known to have support
é??(Nl,Nz), then the phase or magnitude of the MlxMz-point DFT of
x(nl,nz) is sufficient for this unique specification provided

Since a non-symmetric irreducible z-transform is a sufficient constraint
for a sequence xe:F(nl,nz) to be uniquely defined by either its magnitude or
phase, it is of interest to determine how restrictive this constraint is. In
other words, given an arbitrary 2-D sequence, is it likely that its z-transform
is non-symmetric and irreducible? An answer to this question may be found by

considering the set JPof ail polynomials in two variables which have degree

Ny>11in 2z, and Ny>1 in 2,. With N=(N;+1)(Ny+1), note that there exists a

one-to-one correspondence between & and RN. Specifically, each polynomial

pcd may be uniquely represented as a vector eRN. Conversely, each point

%

x_e R corresponds to a polynomial pe &P . Now, consider the subset IB of P

p




which contains all those polynomials which are reducible. With the correspondence
noted above, B represents a subset %/ of RV, since it may be shown [9] that
% is a set of measure zero in RN, "almost every" polynomial in more than one
variable is irreducible. In a probabilistic setting, this result states that a
polynomial pe & is irreducible with probability one. It may also be shown, in
a style similiar to that in [9] , that the set of symmetric polynomials represents
a set of measure zero in RN. Thus, it follows that "almost every" polynomial in
:’F two or more variables satisfies the constraints of Theorem 6. Consequently,
"almost every" 2-D sequence with finite support is uniquely defined (in the sense
of Theorems 3 and 5) by either the phase or magnitude of its Fourier transform.
Although the results which have been presented thus far have been confined
to sequences with finite support, an extension is easily made to those sequences
whose convolutional inverses have finite support. Specifically, Tet xi(nl,nz)

3 denote the convolutional inverse of a 2-D sequence X("l’"z)’ i.e.
x(nl,nz) * xi(nl,nz) = é(nl,nz) | (59)
where G(nl,nz) is the 2-D unit sample function. Now suppose that x(nl,nz) is

a stable sequence which has a z-transform of the form

1 1
X(zy52,)) = ——— (60) .
1°°2
P(zl,zz)
j where p(zl,zz) is a polynomial in g’(zl,zz). In this case, the convolutional

inverse of x(nl,nz) has a z-transform given by
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Xi(Z].’zz) = P(zl922) (6])

so that x, EF("l’“z)‘ In addition, the phase or magnitude of xi("l’"z) is

uniquely defined by the phase or magnitude of x(nl,nz) respectively:

X, (o)) = Xy |7 (622)

¢xi(m1.m2) = - ¢x(w1,w2) (62b)

Therefore, if x(nl,nz) is a stable sequence with a z-transform given by (60),

then x(nl,nz) is uniquely defined by its phase or magnitude if the polynomial

P(zl,zz) satisfies the appropriate constraints.
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V. SUMMARY

In this paper, conditions have been deve]bped under which a multi-dimensional
sequence is uniquely specified by the phase or magnitude of its Fourier transform.
These conditions were shown to include almost all sequences in two or more unknowns
which have finite support. Although it was initially assumed that either the phase
or magnitude was known for all frequencies, the uniqueness constraints were then
extended to include the case in which the phase or magnitude was specified over
a particular finite set of points.

The question of uniqueness, however, is only one aspect of the more general
problem of multi-dimensional signal reconstruction from phase or magnitude.
Although not considered in this paper, another important question concerns the
development of practical algorithms for reconstructing a multi-dimensional
sequence from either its phase or magnitude. A number of algorithms have been
developed for multi-dimensional signal reconstruction from phase which include
the extension of 1-D phase-only reconstruction algorithms [6] to higher dimensional
sequences. Reconstruction from magnitude, on the other hand, still remains an
area of active research. Although a few algorithms have been proposed (some
references may be found in [7] ), none appear to be suitable for the reconstruction
of arbitrary multi-dimensional sequences. Even beyond reconstruction algorithms,
another important issue which remains to be investigated is the sensitivity of
a multi-dimensional sequence to measurement errors in its phase or magnitude.

In particular, it is of interest to determine the effect on the reconstruction

of a sequence to noisy phase or magnitude information.
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